This paper is concerned with the finite time blow-up phenomena for the vector nonlinear Schrdinger equations with a magnetic field which describe the spontaneous generation of a magnetic field in a cold plasma in the subsonic limit. After obtaining some a priori estimates,we prove under certain natural conditions that the solutions to the Cauchy problem of the vector nonlinear Schrdinger equations in two and three spatial dimensions blow up in a finite time. Assuming that a solution to the aforementioned vector nonlinear Schrdinger equations is radially symmetric with respect to spatial variables x,we show that if the initial energy is non-positive,then the solution blows up in three dimensions in a finite time.
Existence and regularity of solutions to model for liquid mixture of 3He-4He is considered in this paper. First, it is proved that this system possesses a unique global weak solution in H^1 (Ω, C ×R) by using Galerkin method. Secondly, by using an iteration procedure, regularity estimates for the linear semigroups, it is proved that the model for liquid mixture of 3He-4He has a unique solution in H^k(Ω, C × R) for all k ≥ 1.
In this paper,we prove that the solutions of magnetic Zakharov system converge to those of generalized Zakharov system in Sobolev space H s,s > 3/2,when parameter β→∞.Further,when parameter (α,β) →∞ together,we prove that the solutions of magnetic Zakharov system converge to those of Schro¨dinger equation with magnetic effect in Sobolev space H s,s > 3/2.Moreover,the convergence rate is also obtained.
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.